Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 17(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415826

RESUMO

The Zika virus received significant attention in 2016, following a declaration by the World Health Organization of an epidemic in the Americas, in which infections were associated with microcephaly. Indeed, prenatal Zika virus infection is detrimental to fetal neural stem cells and can cause premature cell loss and neurodevelopmental abnormalities in newborn infants, collectively described as congenital Zika syndrome. Contrastingly, much less is known about how neonatal infection affects the development of the newborn nervous system. Here, we investigated the development of the dentate gyrus of wild-type mice following intracranial injection of the virus at birth (postnatal day 0). Through this approach, we found that Zika virus infection affected the development of neurogenic regions within the dentate gyrus and caused reactive gliosis, cell death and a decrease in cell proliferation. Such infection also altered volumetric features of the postnatal dentate gyrus. Thus, we found that Zika virus exposure to newborn mice is detrimental to the subgranular zone of the dentate gyrus. These observations offer insight into the cellular mechanisms that underlie the neurological features of congenital Zika syndrome in children.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Criança , Lactente , Feminino , Gravidez , Animais , Camundongos , Infecção por Zika virus/complicações , Neurogênese , Morte Celular , Proliferação de Células
2.
J Neurochem ; 166(4): 763-776, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37497817

RESUMO

Maternal infections are among the main risk factors for cognitive impairments in the offspring. Zika virus (ZIKV) can be transmitted vertically, causing a set of heterogeneous birth defects, such as microcephaly, ventriculomegaly and corpus callosum dysgenesis. Nuclear distribution element like-1 (Ndel1) oligopeptidase controls crucial aspects of cerebral cortex development underlying cortical malformations. Here, we examine Ndel1 activity in an animal model for ZIKV infection, which was associated with deregulated corticogenesis. We observed here a reduction in Ndel1 activity in the forebrain associated with the congenital syndrome induced by ZIKV isolates, in an in utero and postnatal injections of different inoculum doses in mice models. In addition, we observed a strong correlation between Ndel1 activity and brain size of animals infected by ZIKV, suggesting the potential of this measure as a biomarker for microcephaly. More importantly, the increase of interferon (IFN)-beta signaling, which was used to rescue the ZIKV infection outcomes, also recovered Ndel1 activity to levels similar to those of uninfected healthy control mice, but with no influence on Ndel1 activity in uninfected healthy control animals. Taken together, we demonstrate for the first time here an association of corticogenesis impairments determined by ZIKV infection and the modulation of Ndel1 activity. Although further studies are still necessary to clarify the possible role(s) of Ndel1 activity in the molecular mechanism(s) underlying the congenital syndrome induced by ZIKV, we suggest here the potential of monitoring the Ndel1 activity to predict this pathological condition at early stages of embryos or offspring development, during while the currently employed methods are unable to detect impaired corticogenesis leading to microcephaly. Ndel1 activity may also be possibly used to follow up the positive response to the treatment, such as that employing the IFN-beta that is able to rescue the ZIKV-induced brain injury.


Assuntos
Microcefalia , Infecção por Zika virus , Zika virus , Animais , Camundongos , Infecção por Zika virus/complicações , Infecção por Zika virus/congênito , Infecção por Zika virus/patologia , Endofenótipos , Proteínas de Transporte
3.
J Musculoskelet Neuronal Interact ; 21(2): 279-286, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059573

RESUMO

OBJECTIVE: To describe the effects of strength exercise practice during pregnancy on the offspring's development parameters: growth and motor performance, hippocampal neuroplasticity, and stress levels. METHODS: Pregnant Wistar rats were divided into two groups: sedentary and exercised rats. Exercised pregnant rats were subjected to a strength training protocol (vertical ladder climbing) throughout the gestational period. Male offspring's body weight, length, and head size were evaluated during the neonatal period (postnatal days [P]2-P21), as well as motor milestones during P0-P8. At P8, a set of male pups were subjected to global hippocampal DNA methylation, hippocampal cell proliferation, and plasma corticosterone concentration. RESULTS: Offspring from trained mothers presented a transient change in body morphometric evaluations, no differences in milestone assessments, enhancement of cell proliferation in the dentate gyrus of the hippocampus, and decreased global hippocampal DNA methylation compared with the offspring from sedentary mothers. Furthermore, strength training during pregnancy did not change the corticosterone concentration of exercised mothers and their offspring. CONCLUSIONS: These data indicate that strength training can protect offspring's development and could impact positively on parameters linked to cognitive function. This study provides a greater understanding of the effects of strength exercise practiced during pregnancy on the offspring's health.


Assuntos
Treinamento de Força , Animais , Animais Recém-Nascidos , Corticosterona , Feminino , Hipocampo , Humanos , Masculino , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...